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Abstract

The types of mathematics used in Computer Aided Design cover

a wide range. This paper will look at some that I have been involved

with over the past twenty years.

� Algebraic geometry, in the context of surface intersection

� Geometric semantics

� Graph theory and analytic geometry in the context of geometric

constraints

� Splines, numerical techniques, and analytic geometry in con-

struction of n-sided surfaces

1 Introduction

\All men of whatsoever quality they be, who have done anything

of excellence, or which may properly resemble excellence, ought,

if they are persons of truth and honesty, to describe their life

with their own hand; but they ought not to attempt so �ne an

enterprise till they have passed the age of forty."

- Autobiography of Benvenuto Cellini

I am not as ambitious (nor as conceited) as Benvenuto Cellini, but writing

this paper at the end of the millennium, I have picked as my topic the various

types of mathematics I have encountered in my own career in computer-aided

design.
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The objective of this paper is to present some of the diferent types of

mathematics which have proven useful in computer-aided design. In many

cases results from the nineteenth century and from disciplines which are no

longer studied in the general mathematical curriculum have proven valuable

for CAD.
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2 Quadric Intersections

\Mathematicians are a species of Frenchmen: if you say some-

thing to them they translate it into their own language and presto!

It is something entirely di�erent" - Goethe

One of the earliest applications of algebraic geometry to CAD was Levin's

work [5] using the representation of quadric surfaces as 4�4 matrices to derive

parameterizations for intersection curves. More details and more examples

can be found in [7].

The work starts from a representation of a quadric surface by a matrix.

Let X = (x; y; z; 1) be the homogeneous coordinates for a point in R3. Then

we can write the equation of a quadric as X Q XT = 0 where Q is a 4 � 4

symmetric matrix. For example, for a sphere of radius r centered at the

origin,

Q =

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 r2

1
CCCA

So if X lies on the intersection of Q1 and Q2 then X Q1X
T = 0 and

X Q2X
T = 0 and further for any � X Q1 + �Q2X

T = 0. So a judicious

choice of � will provide a simple surface or a least a ruled surface which

provide a nice domain for parameterizing the intersection curve.

Continuing with the example from above, let

Q0 =

0
BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 0

1
CCCA

Q0 is a cone x2 + y2 = z2.

Q + �Q0 =

0
BBB@

1 + � 0 0 0

0 1 + � 0 0

0 0 1� � 0

0 0 0 0

1
CCCA

and when � = �1 we obtain the two planes 2z2 = r2, and the intersection

curves: two disjoint circles.

When we move this technique into the \real world" two problems arise.

First, consider the quadric:
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Q0 =

0
BBB@

1 + �1 0 0 0

0 1 + �2 0 0

0 0 1 + +�3 0

0 0 0 r2

1
CCCA

This is an ellipsoid. But, is it really an ellipsoid, or just a sphere whose

values have been perturbed a little? In [4] the answer suggested was that we

cannot tell, but it doesn't matter. In production limiting surface types to

the \natural" quadrics (plane, sphere,cylinder, cone) should su�ce.

The second problem similarly involves numerical issues but in a more fun-

damental problem. Solid models link topology and geometry. In a computer,

topology is logical: this edge is or is not adjacent to that edge; but geometry

is numerical: this point is (0.0,0.0,0.0) within a given tolerance. Now look at

what happens to our sphere-cone intersection as we move the center of the

sphere o� the apex of the cone:

Q2 =

0
BBB@

1 0 0 a

0 1 0 0

0 0 1 0

a 0 0 r2

1
CCCA

Q2 + �Q0 =

0
BBB@

1 + � 0 0 a

0 1 + � 0 0

0 0 �� 0

a 0 0 0

1
CCCA

When a = r we get a �gure-8 sort of curve, when a is close to zero we get

two disjoint curves. When a is close to r, we get two disjoint curves which

might be within tolerance of looking like a �gure-8. The solution here is to

analyze the possible states, and force the cases which are within tolerance of

topological boundary states (like the �gure 8) to be treated as though they

were on the boundary.

A simple example of a state diagram is for two spheres, say S1 with radius

R1 and S2 with radius R2. There is only one parameter: the distance between

the spheres. Assume S1 is centered at the origin. Tangency occurs when the

distance between the centers is R1 + R2 and the state diagram looks like:

Variable is distance between centers

i

2 circles tangent no intersection
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3 Geometric Semantics

\I want to suggest to you today, that unless we have a tolerant

attitude toward mistakes - I might almost say `a positive attitude

toward them' - we shall be behaving irrationally, unscienti�cally,

and unsuccessfully. Now, of course, if you now say to me, 'Look

here, you weird Limey, are you seriously advocating relaunching

the Edsel?' I will reply, " `No.' There are mistakes - and mis-

takes. There are true, copper-bottom mistakes like spelling the

word "rabbit" with three Ms; wearing a black bra under a white

shirt; or, to take a more masculine example, starting a land war

in Asia. These are the kind of mistakes described by Mr. David

Letterman as Brushes With Stupidity, because they have no rea-

sonable chance of success." -John Cleese

Although there are several ways to represent solid objects in a computer,

two have been used most widely. The Constructive Solid Geometry (CSG)

representation describes a solid as the result of a sequence of Boolean opera-

tions on a given set of primitive solids. The Boundary representation (B-rep)

describes the solid as an object in 3-space bounded by faces. Even systems

which store solids as B-reps may use a CSG description of how the solid is

built. I looked at how to minimize the cost of building solids in [8]. This

was a mistake on two counts. First, Moore's Law [2] it is now eight years

later so computers are about 25 times faster. Second, the construction his-

tory may capture some of the geometric semantics, for example, modeling

the machining process - and that information has value.

So what I would like to discuss here is two versions of geometric semantics

and a foundational issue.

3.1 B-rep to CSG

Semantics needs a syntax to make sense. The syntax in this case is the

construction history of an object: how was it made using Boolean operations?

Geometric semantics is provided by an evaluation process which will take a

CSG tree and generate a boundary representation.

The reverse process: B-rep to CSG is trivial in a formal sense: make a tree

with one primitive which is the evaluated solid. This is, however, stretching

the notion of primitive. For CSG representations, primitives are de�ned in
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terms of half-spaces. Shapiro and Vossler in [16] and [15] identify two main

problems to be solved. A set of half-spaces Hb divides R
3 into cells. If we

can construct CSG representation for all of the cells inside S, the b-rep in

hand can be built as the union of the CSG representations of the closures

of those cells. [16] then discusses how to optimize this result to get a more

e�cient CSG tree.

3.2 Feature recognition

An alternative syntax to Booleans is the notion of features. The incorpo-

ration of features into commercial modeling systems is arguably responsible

for a wider acceptance of solid modeling. This is a richer syntax, providing

a more useful semantics.

Shen et. al. in [17] use similar techniques to Shapiro and Vossler to

recognize features as opposed to reconstructing a CSG tree. Shirar et. al. in

[18] provide an algebra for features in the context of machining operations.

Mantyla et. al. in [11] provide a broader overview of the �eld.

3.3 Foundations

In [12] Raghothama and Shapiro note:

\From its very inception solid modeling [see Requicha [14]] has

been synonymous with unambiguous (informationaly complete)

representations of homogeneously n�dimensional subsets of the

Euclidean space. On the other hand, the recent rise of solid mod-

eling as a principal information medium, �rst in engineering and

now in consumer aplicaitons,probably has to do more with the

development and succesful marketing of new parametric (feature-

based and constraint-based) user interfaces than with the mathe-

matical soundness of solid modeling systems...the new solid mod-

eling systems no longer guanatee that the parametric models are

valid or unambiguous, and the results of modeling operations are

not always predictable."

Requicha [14] uses the set topological notion of regular sets to insure

that solids obtained by evaluating CSG trees are realizable (i.e. machinable)

pieces of space. A set X is regular if X = c(i(X)), the closure of its interior.

6



The acceptance of parametric or feature-based systemns demonstrates

the need for a richer syntax and a correspondingly more complex geometric

semantics. At the same time, [12] Raghothama and Shapiro provide exam-

ples of how the semantics are in general ambigous, and provide one possible

direction for a solution: using the structure of an B-rep as a cell complex to

control and evaluate the e�ects of changes in parameter.
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4 Geometric Constraints

\On two occasions I have been asked [by members of Parliament],

'Pray, Mr. Babbage, if you put into the machine wrong �gures,

will the right answers come out?' I am not able rightly to ap-

prehend the kind of confusion of ideas that could provoke such a

question." Charles Babbage

In early CAD systems, two lines drawn at right angles would not \know"

that they were perpendicular. Geometric constraints add this knowledge.

One method is to encode all of the constraints as a series of equations and

apply classical numerical methods. An alternative method, based on analytic

solutions and analysis of a dependency graph, is given in [6]. The strength

of this approach is reliable, reproducible results. A numerical solution may

depend on (possibly random) initial guesses. A weakness of the analytic

approach is that the types of geometry which can be handled are limited.

Here is an example of how to use a simpler geometry (the control net for

a b-spline) to constrain a more complicated object (an elliptical arc). First,

replace the elliptical arc by its rational quadratic Bezier curve.

@
@
@
@
@
@
@
@
@
@
@
@

Assuming the constraint solver cannot handle ellipses directly, build up

a set of constraints starting with those two lines which force the quadratic

Bezier to be an ellipse.
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p1m

p10 p12

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

p0 p2

p1

pm

p�

The rational Bezier form is

�0(t) = (1 � t)2; �1(t) = 2t(t � 1); �2(t) = t2

P (t) =

P
2

i=0
wipi�i(t)P

2

i=0
wi�i(t)

:

Let w0 = w2 = 1:0 and then

w1 =
kp+m�p�k
kp1�p�k

:

The geometric constraints needed to to get an ellipse are:

p10 p
1
2 k p0 p2 (A)

and

w � 1 < 1 (B)

For (B) add:

� pm is the midpoint of p0 p2
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� p1m is the midpoint of p1 pm

� Now de�ne a line L parallel to p0 p2 passing through p1m,

� a circle C1 with center on p1 pm tangent to L and p0 p2.

� Now let point p0 lie on C1 \ p10 p
1
2.

� The �nal (magic) constraint is C2 - a circle centered at p0 tangent to

L. The magic is that the constraint solver forbids zero-radius circles,

so the radius of C2 is never zero, forcing w � 1 < 1.
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5 N-sided Surfaces

\I'm �xing a hole where the rain gets in

And stops my mind from wandering

Where it will go

I'm �lling the cracks that ran through the door

And kept my mind from wandering

Where it will go"

-John Lennon

The problem being considered is:

Given Ci; i = 1; :::; n n curves whose endpoints match, i..e (if we say

C0 = Cn) the end of Ci�1 is the start of Ci, �ll in the hole bounded by the

Ci, possibly satisfying some additional boundary conditions. For example,

in blending the Ci are the edges of faces and the �lling surface or surfaces

must be smooth across the edges.

This problem was discussed in [10]. Other surveys are: Dyn [1] for a

review of John Gregory's contributions to the �eld, Gregory[3] is a survey on

n-sided patches by Gregory and others, Varady[19] speci�c to vertex blends,

and Vida[20] discusses blends in general with a section on n-sided issues.

There are two main approaches. Multiple patch approaches �ll in the

holes with three-sided or four-sided patches. The di�culty then is to insure

cross-patch continuity. Single patch approaches �nd a single patch. This

is easier to deal with in a solid modeling environment, but had di�culty

because of the non-standard parameterizations. Recent work in [21] shows

that several of the single patch approaches can be expressed in terms of

toroidal varieties.

I close this section with two examples of extremely simple n-sided surfaces.

Assume the Ci are all arcs. De�ne the normal for an arc to be the line de�ned

by the center of the arc and the normal vector of the plane it lies in. Then,

Theorem 1 The region bounded by the Ci can be �lled with a plane if and

only if Ni, the normals are all parallel.

Proof: If all of the Ci are in the same plane, then the Ni must all be

parallel to the normal for that plane. If the N = i are all parallel, then the
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fact that Ci and Ci+1 share an endpoint means that CI and Ci+1 are in the

same plane, so all of the Ci lie in the plane de�ned by N0 and the center of

C0.

Further, given

Lemma 1 An arc C lies on a sphere S if and only if its normal N passes

through the sphere's center.

Proof: If the arc C is on the sphere, let c0 be the sphere center, and c0
be the arc center. Then for p on the arc, (p � c0)

_(c0 � c0) = 0 by looking

at the great circle de�ned by p; c0 and c0. So the normal vector for the plane

of C is parallel to (c0 � c0) and the normal (line) for C passes through c0.

Conversely, if N passes the c0, C lies on the intersection of its plane and S.

it follows that

Theorem 2 The region bounded by the Ci can be �lled with a sphere if and

only if the Ni all intersect in a common point P which is the center of the

�lling sphere.

Proof: Similar argument to the one for the plane. If all the arcs lie on

a sphere, then by the lemma the normals all pass through the center of the

sphere. Conversely, the common point of Ci and Ci+1 forcea the sphere they

each lie on to be the same sphere.

Some cases for which I do not have any nice answers: when can a collection

of arcs bound a piece of a cylinder or a torus or a Dupin cyclide?
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6 Conclusion

\Mathematicians have long since regarded it as demeaning to

work on problems related to elementary geometry in two or three

dimensions, in spite of the fact that it is precisely this sort of

mathematics which is of practical value" - Branko Gr�unbaum and

G. C. Shephard in the Handbook of Applicable Mathematics

Any of the topics discussed here merit a complete and deeper discussion of

their own. I hope this paper provides su�cient introduction to the literature

and motivation for considering these (newer) examples of applied (older)

mathematics.
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