IMAGE section3383.gif
IMAGE section3384.gif
IMAGE section3385.gif
IMAGE section3386.gif
IMAGE section3387.gif

DesignExperimental Matrix

Possibilities:

Factorial with centerpoint
Box-Behnken
Central composite design

Runexperimental matrix; collect data

Analyze datausingMultiple Linear Regression, withsecondorder equation:

Main Effects
X1
X2
X3

Second Order Effects
X1*X1
X2*X2
X3*X3

Interactions
X1*X2
X2*X3
X1*X3

Response

=

A

+B*X1+C*X2+D*X3
+E*X1^2+F*X2^2+G*X3^2
+I*X1*X2+J*X2*X3+K*X1*K3

GenerateResponse Surfaces, using model from multiple linear regression

-
-

Contour plots
Mesh plots

IMAGE section3388.gif

INPUT VARIABLES

RESPONSE

bs Implant Dose(E11)

Blanket Implant Dose(E11)

Vt–p (mV)

2.71

1.84

1088

16.2

1.84

1282

2.71

7.44

577

16.2

7.44

881

23.6

3.70

1257

1.87

3.70

913

6.64

9.94

402

6.64

1.38

1187

6.64

3.70

1012

IMAGE section3389.gif

B > let c11 = c1 • c1

B > let c12 = c1 • c2

B > let c22 = c2 • c2

B > regress c10

5

c1

c2

c11

c22

c12;

BC > coeff c20;

BC > resid c30.

B > nscores

c30

c31

B > plot

c30

c31

B > corr

c30

c31

B > WRITE ‘VT VS 12 RSM.COEFF’

C20

B > NAME C101 ‘SUBS’ C102‘BLANKET’ C103 ‘VT’

B > GRID C101= 1.8:2.4, C102 = 1.3:10
B > LET C103= 1189 + 16.2*C101 – 77.6*C102 – 0.258*C101**2– 2.28*C102**2
B > LET C103 = C103 + 1.69*C101*C102

B > CONTOUR C103

C101

C102

[made with GoClick]

1